The better theoretical model of molecular vibrations includes the possibility of bond dissoication Eqn. \eqref{eq:morse}, where k is the proportionality constant, D is the bond energy and r-r0 the displacement from an equilibrium position, r0.
\begin{equation}
{V_{morse}} = D{\left( {1 - {e^{ - \beta \left( {r - {r_0}} \right)}}} \right)^2}
\beta = \sqrt {\frac{k}{{2D}}}
\label{eq:morse}
\end{equation}
Solving the quantum mechanical problem results in a set of evenly spaced energy levels or frequencies ν, Eqn. \eqref{eq:energies}.
\begin{equation}
{E_{morse}} = \nu \left( {n + {\textstyle{1 \over 2}}} \right) - \nu x{\left( {n + {\textstyle{1 \over 2}}} \right)^2} = \nu \left( {n + {\textstyle{1 \over 2}}} \right)\left( {1 - x\left( {n + {\textstyle{1 \over 2}}} \right)} \right);x = \frac{{hc\nu }}{{4D}}
\label{eq:energies}
\end{equation}
At finite temperatures T these energy levels are populated according to a Boltzman population distribution, Eqn. \eqref{eq:pops}
\begin{equation}
{P_i} = \frac{{{e^{-iE/{k_B}T}}}}{Q}
\label{eq:pops}
\end{equation}
where Q is the partition function, Eqn. \eqref{eq:part_func}.
\begin{equation}
Q = \sum\limits_{j = 1}^n {{e^{ - jE/{k_B}T }}}
\label{eq:part_func}
\end{equation}
Boltzman populations can be combined with the dependences of thermodyanmic quantities on Q to develop the temperature dependence of the average energy, Equation \eqref{eq:ave_e},
\begin{equation}
\left\langle E \right\rangle = \sum\limits_s {{E_s}{P_s}} = \frac{1}{Z}\sum\limits_s {{E_s}{e^{ - {E_s}/{k_B}T}}}
\label{eq:ave_e}
\end{equation}
the enthalpy, Eqn. \eqref{eq:enthalpy},
\begin{equation}
\left\langle H \right\rangle = \left\langle E \right\rangle + nRT
\label{eq:enthalpy}
\end{equation}
the entropy, Eqn. \eqref{eq:entropy}
\begin{equation}
S = - {k_B}\sum\limits_s {{P_s}\ln {P_s}}
\label{eq:entropy}
\end{equation}
the free energy, Eqn. \eqref{eq:free}
\begin{equation}
\Delta G = \Delta H - T\Delta S
\label{eq:free}
\end{equation}
and the heat capacity, Eqn. \eqref{eq:cp}.
\begin{equation}
{C_V} = \frac{{\partial \left\langle E \right\rangle }}{{\partial T}} = \frac{1}{{{k_B}T}}\left\langle {{{\left( {\Delta E} \right)}^2}} \right\rangle ;{\rm{ }}{C_p} = {C_V} + nR
\label{eq:cp}
\end{equation}