Harmonic Thermodynamics

The simplest theoretical model of molecular vibrations involves a linear restraining force, Eqn. \eqref{eq:force}, where k is the proportionality constant and r-r0 the displacement from an equilibrium position, r0. \begin{equation} F = k\left( {r - {r_0}} \right) \label{eq:force} \end{equation} This results in a Hooks Law harmonic potential, Eqn. \eqref{eq:harmonic} where k is called the vibrational force constant. \begin{equation} V = {\textstyle{1 \over 2}}k{\left( {r - {r_0}} \right)^2} \label{eq:harmonic} \end{equation} Solving the quantum mechanical problem results in a set of evenly spaced energy levels or frequencies ν, Eqn. \eqref{eq:energies}. \begin{equation} E = \nu \left( {n + {\textstyle{1 \over 2}}} \right){\rm{ where }} \nu = \frac{h}{{2\pi }}\sqrt {\frac{k}{\mu }} \label{eq:energies} \end{equation} At finite temperatures these energy levels are populated according to a Boltzman population distribution, Eqn. \eqref{eq:pops} \begin{equation} {P_i} = \frac{{{e^{-iE/{k_B}T}}}}{Q} \label{eq:pops} \end{equation} where Q is the partition function, Eqn. \eqref{eq:part_func}. \begin{equation} Q = \sum\limits_{j = 1}^n {{e^{ - jE/{k_B}T }}} \label{eq:part_func} \end{equation}

The Boltzman populations can be combined with the dependences of thermodyanmic quantities on Q to develop the temperature dependence of the average energy, Eqn. \eqref{eq:ave_e}, \begin{equation} \left\langle E \right\rangle = \sum\limits_s {{E_s}{P_s}} = \frac{1}{Z}\sum\limits_s {{E_s}{e^{ - {E_s}/{k_B}T}}} \label{eq:ave_e} \end{equation} the enthalpy Eqn. \eqref{eq:enthalpy}, \begin{equation} \left\langle H \right\rangle = \left\langle E \right\rangle + nRT \label{eq:enthalpy} \end{equation} the entropy, Eqn. \eqref{eq:entropy} \begin{equation} S = - {k_B}\sum\limits_s {{P_s}\ln {P_s}} \label{eq:entropy} \end{equation} the free energy, Eqn. \eqref{eq:free} \begin{equation} \Delta G = \Delta H - T\Delta S \label{eq:free} \end{equation} and the heat capacity, Eqn. \eqref{eq:cp}. \begin{equation} {C_V} = \frac{{\partial \left\langle E \right\rangle }}{{\partial T}} = \frac{1}{{{k_B}T}}\left\langle {{{\left( {\Delta E} \right)}^2}} \right\rangle ;{\rm{ }}{C_p} = {C_V} + nR \label{eq:cp} \end{equation}
Figure 1. Harmonic Potential Energy curve with vibrational energy levels and thermal populations superimpsoed.
States
Vibration = 200;
Temperature = 100;
Enthalpy = 100kJ/mol;
Entropy = 100J/molK;
Free Energy = 100kJ/mol;

Page 3