Getting Around the Carnot Cycle: Fuel Cells

(Photo)Electrolysis for Splitting Water

Example of Redox in Biology: Oxidative Stress

- Situation: parts of a living being produce **reactive oxygen species** faster than other parts can remove those species, creating an imbalance in compounds that can damage cell tissue and function
- Impacts for proteins:
 - Atherosclerosis
 - Parkinson's disease
 - Myocardial infarction
 - Alzheimer's disease
 - Schizophrenia
 - Bipolar Disorder
 - Chronic fatigue syndrome
- Impacts for DNA:
 - Cancer
 - Mutations

If you're looking to read more, Wikipedia isn't a terrible place to start:

http://en.wikipedia.org/wiki/Oxidative_stress

Oxidative Phosphorylation

http://en.wikipedia.org/wiki/Oxidative_phosphorylation

Oxidative Phosphorylation: Potential Precursor to ROS

ATP + $H_2O \rightarrow ADP + PO_4^{3-}$ $\Delta G^{0'} = -31.0 \text{ kJ/mol} (-7.41 \text{ kcal/mol}); \Delta H^{0'} = -24.3 \text{ kJ/mol} (-5.81 \text{ kcal/mol})$

During ATP production from ADP, e⁻ can leak out of the mitochondria & react: oxygen is a plentiful and willing target (large electronegativity)

Reactive Oxygen Species (ROS)

Consequence of ROS Production: Guanine Oxidation

Guanine Oxidation Leads to Base-Pairing Disruption

Normal base-pairing

T - Acritical to properDNA replicationDNA replicationand transcription

Mismatched base-pairing Instead of A-T we now have A-G

A – **G** Rutroh Astro...

DNA Duplex with Oxidized Guanine

Antioxidants

- Reading—chapter 11.9 (6th edition of text)
- Fatty foods become rancid ٠ after prolonged exposure to oxygen
- Antioxidants react with ROS • to remove radicals
- Natural and industrial sources •
 - berries
 - chocolate
 - red wine
 - BHT, BHA
- Reactions of antioxidants (BHT and BHA):
 - RO_2 + ArOH \rightarrow ROOH + ArO.
 - RO_2 + ArO · \rightarrow nonradical products

BHT = Butylated hydroxytoluene BHT = Butylated hydroxyanisole

OH

CH₃

Benzene Oxidation

23

Thermite Reaction

- The main reason to introduce oxidation/reduction chemistry to CHEM 103
- Remember that combustion is a redox reaction
- Metals can "burn" just like hydrocarbons
- Some metals really "want" to be oxides (e.g. Cr, Al)

 $Fe_2O_3 + 2AI \rightarrow 2Fe + Al_2O_3$

- Questions to consider:
 - Which species is being oxidized?
 - Which species is being reduced?
 - Which species is the oxidizing agent?
 - Which species is the reducing agent?
- Thermite reaction used for welding railroad tracks together

279 kJ/mol Al (67 kcal/mol Al) (A Baby Ruth candy bar is ~160 kcal)

Nutrition	Facts
Serving Size	
1 bar (1.2 oz) (34.0 g)	\$
Amount Per Serving	
Calories 156	Calories from Fat 66
	% Daily Value
Total Fat 7.3g	11%
Saturated Fat 4.1g	21%
Trans Fat 0.0g	
Polyunsaturated Fat 0.9g	
Monounsaturated Fat 1.9g	
Cholesterol Omg	0%
Sodium 78mg	3%
Total Carbohydrates 22	.0g 7%
Dietary Fiber 0.7g	3%
Sugars 18.4g	
Protein 1.8g	
Vitamin A 0%	Vitamin C 0%
Calcium 2%	Iron 1%
* Based on a 2000 calorie die	et

Thermite video

1000 lb thermite $\times \frac{454 \text{ g}}{1 \text{ lb}} \times \frac{1 \text{ mole thermite}}{213.7 \text{ g thermite}} \times \frac{2 \text{ mole Al}}{1 \text{ mole thermite}} \times \frac{67 \text{ kcal}}{1 \text{ mole Al}} = 2.85 \times 10^5 \text{ kcal}$ 178 Baby Ruths!

Unit 4.3 Summary

- Concepts
 - definitions of redox terms
 - oxidation: a compound loses electron(s)
 - reduction: a compound gains electron(s)
 - determination of oxidation state
 - combustion is a redox reaction: check out the oxidation states of the reactants and products
 - galvanic cells and batteries
 - cathode (+): where the reduction takes place
 - anode (-): where the oxidation takes place
 - V = I*R Voltage = Current * Resistance
 - biological redox
 - reactive oxygen species (hydroxyl, superoxide, peroxide)
 - effects on proteins, DNA
 - thermite reaction: exploiting the propensity of some metals (e.g. Aluminum) to oxidize very easily