CHEM 103, Unit 1.1

Chemistry Bootcamp Structural Chemistry—building up molecules from atoms, introducing solubility issues (target example: active ingredient in chiles)

Structural Chemistry: Sweet, Fatty & Spicy

Molecular structure helps us understand:

How compounds react & are changed

What will dissolve in (be soluble in) what

What biological molecules look like & a bit about how they work

Structural Chemistry, Sweet & Spicy

Matter & Energy

Atoms (e⁻, p⁺, n) & Molecules

Compounds (Molecules) built from atoms

Described with Chemical formulas and structural diagrams

Have 3-D structures (take up space)

Carbon forms 4 bonds (connections) Nitrogen 3, and Oxygen 2

3-D shapes of atoms connected to make 3-D molecules

What does Sugar look like

Capsaicin (chiles)

Reactions

Atoms neither created nor destroyed (balanced) For now one important reaction: condensation

Solutions

Like dissolves like What do fats look like

Energy & Matter

Chemistry is the study of energy and matter Matter can either be a mixture, an element, or a compound (molecule)

Matter does what it does because of manner in which it occupies space: its 3-D shape

Air is a mixture:

Hemoglobin is a compound:

Section 1.1, 1.6

Atoms, Molecules, Names & Formulas

Atom: smallest stable unit of an element (e⁻, p⁺, n)

Molecule: smallest stable unit of a compound held together in specific spatial arrangements by chemical bonds (shared pairs of electrons).

Contain fixed #s of atoms of specific elements

Chemical formulas: symbolically represent the types & #s of elements in a molecule

Determining Molecular Shapes

Carbon forms 4 bonds & has a tetrahedral structure, if bonded to four other atoms

Periodic Table

IA													8A	A Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.											
1 H 1.008	24 Atomic number Cr 2A 52.00 Atomic mass									13 3A	13 14 15 16 17 2 He Table 2.2 Total an 3A 4A 5A 6A 7A 4.003 of the Fi					d Outer Electrons for Atoms rst 18 Elements									
3 Li 6.941	4 Be 9.012											5 B 10.81	6 C 12.01	7 N 14.01	8 0 16.00	9 F 19.00	10 Ne 20.18	Group 1A	2A	3A	4 A	5A	6A	7A	Noble Gases 8A
11 Na 22.99	12 Mg 24.31	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 	10	11 1B	12 2B	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 Cl 35.45	18 Ar 39.95	1 H							2 He
19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.88	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.39	31 Ga 69.72	32 Ge 72.61	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80	3 Li	4 Be	5 B	6 C	7 N	8 O	9 F	2 10 Ne
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc (98)	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 I 126.9	54 Xe 131.3	1 11	2 12	3 13	4 14	5 15	6 16	7 17	8 18
55 Cs 132.9	56 Ba 137.3	57 La 138.9	72 Hf 178.5	73 Ta 180.9	74 W 183.9	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 TI 204.4	82 Pb 207.2	83 Bi 209.0	84 Po (210)	85 At (210)	86 Rn (222)	Na 1	Mg 2	A1 3	Si 4	Р 5	S 6	Cl 7	Ar 8
87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (269)	109 Mt (268)	110 Ds (271)	111	112	113	114	115	(116)	(117)	(118)	 Number <i>above</i> the a of electrons in a neut Number <i>below</i> the a 	atomic sy ral atom. atomic sy	mbol is the ato mbol is the nur	mic number nber of out e	, the total m er electrons	imber of pro	tons. It also g atom.	ives the total number
	March																								
	Metalloi	ids		58 Ce 140.1	59 Pr 140.9	60 Nd 144.2	61 Pm (145)	62 Sm 150.4	63 Eu 152.0	64 Gd 157.3	65 Tb 158.9	66 Dy 162.5	67 Ho 164.9	68 Er 167.3	69 Tm 168.9	70 Yb 173.0	71 Lu 175.0								
	Nonmet	als		90 Th 232.0	91 Pa 231.0	92 U 238.0	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)								

Section 1.6, 2.2

Structures of Molecules (Lewis Dot Structures)

Most atoms are reactive & react to form molecules with bonds between atoms—trying to achieve the same number of valence electrons as the noble gas of its period

For our purposes, covalent bonds are pairs of shared electrons

Structures that show the outer electrons are called **Lewis (dot) structures**

Lewis structures of atoms help us build molecular structures

example 1: $H \bullet + \bullet H \rightarrow H: H \rightarrow H-H$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Table 2.2 **Total and Outer Electrons for Atoms** of the First 18 Elements **Noble Gases Group 1A** 2A 3A **4**A 5A **6**A 7A 8A 2 Η He 1 2 3 4 6 8 9 10 Li В С Ν 0 F Be Ne 3 1 2 4 5 6 8 7 11 12 13 14 15 17 18 16 Si Р S Cl Na Al Ar Mg 3 8 1 2 4 6 7

• Number *above* the atomic symbol is the atomic number, the total number of protons. It also gives the total number of electrons in a neutral atom.

• Number *below* the atomic symbol is the number of **outer** electrons in a neutral atom.

$$H \cdot + : F : \longrightarrow H : F : \Longrightarrow H - F : \Longrightarrow H - F$$

Section 2.2 H looks like He and F looks like Ne

Line indicates a bond (pair of electrons)

Di- and Triatomic Molecules

Atoms will share some or all of their valence electrons to achieve the same electronic configuration as the noble gas in its period. Covalent bonds are formed from pairs of shared electrons, and each atom gets to count the bonding electrons as its own...

H·							He:
Li・	Be	В·	• C •	: N ·	:0:	: F:	: Ne:
Na	Mg	Al∙	· Si·	: : P· ·	: : S :	: CI:	: Ar :

Determining Molecular Shapes

Carbon forms 4 bonds & has a tetrahedral structure, if bonded to four other atoms

Combinations

These tetrahedral, pyramidal, and bent units can be combined to make larger compounds

Alcohol or hydroxyl functional group. Functional groups help us recognize and understand physical and chemical propertiesl (solubility, reactivity, similarity)

Section 10.3

Even Larger Combinations

Six tetrahedral carbon units and six bent oxygen units can combine to form glucose (alcohol/hydroxyl functional group)

Double Bonds

If bonded to three atoms (bonded twice to one), carbon is flat (trigonal planar) (still four bonds) 120.0° (C=

Condensation Reaction

The one reaction we need to know to study the molecules of life is the condensation reaction (water (H_2O) is a product)

$\mathrm{C_2H_4O_2} + \mathrm{C_2H_6O} \rightarrow \mathrm{C_4H_8O_2} + \mathrm{H_2O}$

atoms of each element the same on reactant and product sides of the equation

Additional functional groups: carboxylic acid, ester

Sugar

Glucose and fructose can condense to form table sugar (sucrose)

Functional Group and Line Drawing Recap

Functional groups we've seen so far (non HC parts of molecules)

